


# Heteropoly Acid-Based Materials for Reversible H<sub>2</sub> Storage as Protons and Electrons under Mild Conditions

Shintaro Itagaki, Kazuya Yamaguchi, and Noritaka Mizuno\*

Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan



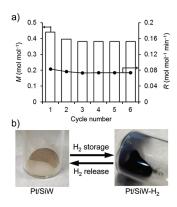
**KEYWORDS:** electron, heteropoly acid, hydrogen storage-release, platinum, proton

Hydrogen  $(H_2)$  is one of the most promising energy carriers and offers significant advantages, including reduction of carbon dioxide emissions at the end use and security of the global energy supply. The key to realize hydrogen-based energy systems is a development of reliable materials and procedures for  $H_2$  production, separation (sieving), storage, and sensing. Especially, much attention has been paid to the development of efficient  $H_2$  storage materials and procedures. Among them, solid materials such as adsorbents and hydride-based materials, which can store  $H_2$  physically (as  $H_2$ ) or chemically (as hydride,  $H^-$ ), has extensively been studied.  $^{2,3}$ 

Polyoxometallates are a large family of well-defined anionic metal-oxygen clusters of early transition metals and stimulated many current research activities in broad fields of science.4 Polyoxometallates are thermally and oxidatively stable and have the following interesting redox properties: (i) abilities of reversible stepwise, multielectron redox reactions with retention of their structures and (ii) controllabilities of their redox potentials by choosing constituent elements.<sup>5,6</sup> In addition, heteropoly acids (HPAs, acid forms of polyoxometallates) including fully oxidized as well as reduced forms are intrinsically stable and show excellent proton conductivities.8 From the above-mentioned unique properties, we came up with an idea that HPAs can reversibly store  $H_2$  as protons  $(H^+)$  and electrons  $(e^-)$ . It is likely that the  $H_2$ storage procedure with HPAs has the following significant advantages: (i) no need for harsh conditions for H2 storage due to Coulombic interaction between H<sup>+</sup> and heteropolyanions, and (ii) high durability due to the stabilities of HPAs and the smaller ionic radius of H<sup>+</sup>, in comparison with H<sub>2</sub>, H<sup>-</sup>, and the hydrogen atom.

Tungsten oxide  $(WO_3)$  reacts with  $H_2$  above 673 K to form tungsten bronze. This reaction readily proceeds, even at room temperature, in the presence of noble-metal catalysts such as Pt and Pd. In this case,  $H_2$  is sorbed in the  $WO_3$  bulk as  $H^+$  and  $e^{-.10}$  Recent mechanistic investigations by the groups of Georg and Nakagawa show that a certain amount of  $H_2$  sorbed in  $WO_3$  reacts with the lattice oxygen and/or  $O_2$ , resulting in the undesirable formation of  $H_2O$ . It has been reported that HPAs reacts with  $H_2$  at temperatures of >520 K. Under such conditions, almost all  $H^+$  formed from  $H_2$  readily react with the lattice oxygen of HPAs to form  $H_2O$ . Although it has been reported that molybdate-based HPAs can sorb  $H_2$  (ca. 1.0 mol mol under mild conditions in the presence of Pd/C (Pd on activated carbon),  $H_2$  cannot be released, because of the high stability of reduced heteropolymolybdates (see below). As far as we know,

materials that can reversibly store  $H_2$  as  $H^+$  and  $e^-$  under mild conditions have never been reported so far.<sup>15</sup>


Herein, we proposed a concept, for the first time, that  $H_2$  is reversibly stored as  $H^+$  and  $e^-$ , using very simple heteropoly acid-based materials (in particular, a composite of Pt and  $H_4SiW_{12}O_{40}$  (Pt/SiW)).

First, H<sub>2</sub> storage properties of various composites of metal nanoparticles (e.g., Pt, Pd, Ir, Ru, Rh, and Au) and SiW were investigated. Composites with a metal:HPA molar ratio of 1:20 were typically used for H<sub>2</sub> storage experiments (unless otherwise noted). Composites of metal nanoparticles and SiW could store  $H_2$  under ambient conditions ( $P_{H_2}$  = 40 kPa, T = 308 K; see the Experimental Section given in the Supporting Information), while no H2 was stored in the presence of SiW alone under the present conditions. The H<sub>2</sub> storage rates (R) increased in the order of Au/SiW < Ru/SiW < Pd/SiW < Rh/ SiW < Ir/SiW < Pt/SiW, in accord with that of dissociative chemisorption energies of H<sub>2</sub> on the corresponding metals. 16 The Pt/SiW composite showed the largest R for H<sub>2</sub> storage. The amounts of  $H_2$  stored (M) in Pt/SiW and Pd/SiW were 0.46 and 0.41 mol mol<sup>-1</sup>, respectively, and almost the same as each other. In addition, values R (0.079-0.091 mol mol $^{-1}$  min $^{-1}$ ) and M(0.41-0.46 mol mol -1) in Pt/SiW were almost independent of the Pt content in the Pt:SiW molar ratio range of 1:10-1:60 (see Figure S1 in the Supporting Information).

Mass spectroscopy (MS) analysis confirmed that  $H_2$  stored in Pt/SiW could be released as  $H_2$  (not as  $H_2O$ ) at 308 K when the  $H_2$ -stored sample (Pt/SiW $-H_2$ ) was simply evacuated or exposed to  $N_2$ . The amount of  $H_2$  released was  $0.46 \pm 0.03$  mol mol $^{-1}$  and equal to that of  $H_2$  stored in Pt/SiW (0.46 mol mol $^{-1}$ ). This is likely due to the redox potential of the first one-electron reaction of SiW located at  $\sim$ 0 V (0.041 V vs NHE). The  $H_2$  storage—release cycle could be repeated at least six times without an appreciable loss of its performance (see Figure 1a). The XRD patterns of Pt/SiW $-H_2$  and Pt/SiW $-H_2$  after  $H_2$  release were almost the same as that of Pt/SiW (see Figure S2a in the Supporting Information), showing that the phase and the lattice constant of Pt/SiW did not change and that large Pt particles were not formed during the cycle.

Next, the effects of HPAs on the H<sub>2</sub> storage—release properties were investigated using composites of Pt and different HPAs

Received: June 13, 2011 Revised: August 12, 2011 Published: August 19, 2011 Chemistry of Materials COMMUNICATION



**Figure 1.** (a) Repeated  $H_2$  storage—release performance of Pt/SiW and (b) pictures of Pt/SiW and  $H_2$  stored Pt/SiW (Pt/SiW— $H_2$ ).  $H_2$  storage conditions: Pt/SiW (Pt:SiW molar ratio of 1:20),  $P_{H_2} = 40$  kPa, 308 K.  $H_2$  release conditions: 308 K for 2 h under vacuum. (See the Supporting Information for details.)

(e.g., SiW, H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub> (PW), H<sub>4</sub>SiMo<sub>12</sub>O<sub>40</sub> (SiMo), and H<sub>3</sub>PMo<sub>12</sub>O<sub>40</sub> (PMo)). The M values increased in the order of  $Pt/SiW (0.46 \text{ mol mol}^{-1}) < Pt/PW (0.72 \text{ mol mol}^{-1}) < Pt/$ SiMo  $(5.8 \text{ mol mol}^{-1})$  and Pt/PMo  $(5.8 \text{ mol mol}^{-1})$ , in accord with that of the first redox potentials of HPAs in aqueous solutions (0.041 V for SiW, 0.221 V for PW, 0.516 V for SiMo, and 0.558 V for PMo). 5,19 Molybdate-based composites Pt/PMo and Pt/SiMo sorbed large amounts of H<sub>2</sub> (5.8 mol mol<sup>-1</sup> for both cases) during the reduction of H<sub>2</sub>PtCl<sub>6</sub> with H<sub>2</sub> (during the preparation of composites; see the Experimental Section). However, it was confirmed by MS analysis that no H<sub>2</sub> could be released from the H<sub>2</sub>-sorbed composite (Pt/PMo-H<sub>2</sub>) at 308 K, because of the high stability of reduced heteropolymolybdates.<sup>4</sup> When  $Pt/PMo-H_2$  was heated to 473 K, not only  $H_2$  but also  $H_2O$ were released from Pt/PMo-H<sub>2</sub>. The amounts of H<sub>2</sub> and H<sub>2</sub>O were  $1.7 \pm 0.1$  and  $3.8 \pm 0.2$  mol mol<sup>-1</sup>, respectively, showing that H<sub>2</sub> sorbed in molybdate-based composites is mainly released as H<sub>2</sub>O at elevated temperatures, as has been previously reported. 13,14

Upon exposure of Pt/SiW to  $H_2$  ( $P_{H_2} = 40$  kPa, T = 308 K), the color of Pt/SiW changed from light gray to dark blue (see Figure 1b), and the absorption band assignable to the intervalence charge transfer between W5+ and W6+ appeared (see Figure S2b in the Supporting Information). Upon exposure of the sample (Pt/SiW-H<sub>2</sub>) to N<sub>2</sub>, the dark blue color of Pt/ SiW—H<sub>2</sub> changed to the original light gray color of Pt/SiW, with the release of H<sub>2</sub>, and the intervalence charge transfer band disappeared (see Figure S2b). In addition, the UV/vis spectrum of Pt/SiW-H2 was quite similar to that of the one-electron reduced SiW (H<sub>5</sub>SiW<sub>12</sub>O<sub>40</sub>). The infrared (IR) spectrum of Pt/ SiW-H<sub>2</sub> showed that the Keggin-type structure was retained after the H2 storage, and that the intensities of the band at 3106 cm<sup>-1</sup>, assignable to the stretching vibration of the hydrogen bond O···H<sup>+</sup>···O between the neighboring Keggin units, <sup>20</sup> was increased (see Figure S2c in the Supporting Information). The integrated area of the band increased from 1.0 to 1.2, and the increase corresponds to that estimated from the H<sub>2</sub> storage experiments (from 1.0 to 1.2). The bands at  $\sim 1500-1700 \text{ cm}^{-1}$ assignable to the bending vibrations of H<sub>2</sub>O and protonated clusters such as  $H_3O^+$  and  $H_5O_2^+$ , were not observed for Pt/SiW- $H_2$ . In addition, the IR spectrum of Pt/SiW-H<sub>2</sub> was quite similar to that of H<sub>5</sub>SiW<sub>12</sub>O<sub>40</sub>. All these results suggest that all of the H<sub>2</sub> is stored as  $H^+$  and  $e^-$  in the SiW bulk without the formation of  $H_2O$ .

It is likely that  $H_2$  storage in Pt/SiW proceeds through the following two steps: (i) dissociation of  $H_2$  on Pt and (ii) diffusion of  $H^+$  and  $e^-$  in the SiW bulk. As previously mentioned, the rate of  $H_2$  storage in Pt/SiW (R) was independent of Pt contents (see Figure S1), suggesting that the dissociation of  $H_2$  on Pt is not the rate-determining step.<sup>17</sup> Therefore, the  $H_2$  storage profiles can be adequately reproduced by the Fickian diffusion equation (eq 1):<sup>21</sup>

$$\partial C/\partial t = D((\partial^2 C/\partial r^2) + (2/r)(\partial C/\partial r))$$
 (1)

where C, r, and D are the concentration of  $H^+$  and/or  $e^-$  in the bulk, the radial coordinate, and the diffusion coefficient of  $H^+$  and/or  $e^-$ , respectively. Supposing that the surface concentration of  $H^+$  and/or  $e^-$  is constant, the solution for eq 1 is given by eq 2:

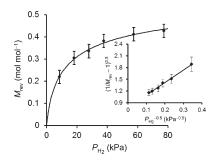
$$\frac{M_t}{M_{\text{rev}}} = 1 - \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left[ \left( -\frac{Dn^2 \pi^2}{a^2} \right) t \right]$$
 (2)

where  $M_t$  is the amount of  $H_2$  stored in SiW at time t,  $M_{rev}$  the maximum amount of  $H_2$  reversibly stored (at 308 K), and a the average particle radius of SiW. The average particle radius was estimated from the surface area calculated using N2 adsorption data  $(4.0 \text{ m}^2 \text{ g}^{-1})$  and the density of the particle  $(5.5 \text{ g cm}^{-3})$  to be  $1.4 \times 10^{-5}$  cm. The best fits for the experimental profile for H<sub>2</sub> storage was obtained using  $D = 2.9 \times 10^{-13} \text{ cm}^2 \text{ s}^{-1}$ (see Figure S3 in the Supporting Information). This value of D was 1 order of magnitude larger than that of the sorption of polar molecules such as methanol, ethanol, and 1,4-dioxane into the solid bulk of nonporous PW  $(10^{-14} \text{ cm}^2 \text{ s}^{-1})$ .<sup>22</sup> Time courses of the relative amounts of  $H_2$  stored  $(M_t/M_{rev})$  in Pt/SiW were independent of  $P_{\rm H_2}$  (in the range of 10–80 kPa) (see Figure S4 in the Supporting Information), suggesting that diffusion of  $H^+$  and/or  $e^-$  in the bulk is the rate-determining step. It has been reported by Klemperer and co-workers that (i) the redox behavior of SiW in the solid state is analogous to that in aqueous solutions, where reversible redox reactions of SiW (single crystals of H<sub>4</sub>SiW<sub>12</sub>O<sub>40</sub>·31H<sub>2</sub>O) in the solid form can take place (e.g., stepwise two one-electron redox reactions at -0.030 and  $-0.18 \,\mathrm{V}\,\mathrm{vs}\,\mathrm{NHE})$  and (ii) the potentials were almost the same as those for aqueous SiW solutions (at 0.041 and -0.16 V vs NHE). Therefore, it is possible that SiW in the solid state undergoes two reversible one-electron reductions as in the solution state. Thus, the present H<sub>2</sub> storage reaction in Pt/SiW is expressed by eqs 3-6:

$$H_2 \rightleftharpoons 2H$$
 (3)

$$H \rightleftharpoons H^+ + e^- \tag{4}$$

$$SiW + H^{+} + e^{-} \rightleftharpoons HSiW \tag{5}$$


$$HSiW + H^+ + e^- \rightleftharpoons H_2SiW$$
 (6)

where HSiW and  $H_2$ SiW are one-  $(H_5$ SiW $_{12}O_{40})$  and two-electron  $(H_6$ SiW $_{12}O_{40})$  reduced silicotung states, respectively. The Langmuir isotherm for dissociative adsorption is given by eq 7,

$$C_{\rm H} = C_{\rm H, sat} (K_1 P_{\rm H_2})^{1/2} / \left[ 1 + (K_1 P_{\rm H_2})^{1/2} \right]$$
 (7)

where  $C_H$  is the concentration of the surface hydrogen atom on Pt,  $C_{H,sat}$  the saturated concentration of the surface hydrogen atom on Pt,

Chemistry of Materials COMMUNICATION



**Figure 2.** Dependence of the maximum amount of  $\rm H_2$  reversibly stored in Pt/SiW ( $M_{\rm rev}$ ) on  $P_{\rm H_2}$ . Symbols and solid lines indicate the experimental and calculated data, respectively. The calculation was carried out with  $K_1$ = 0.059 kPa<sup>-1</sup> and  $K_2^2K_3K_4C_{\rm H,sat}^2$  = 1.7 cm<sup>6</sup> mol<sup>-2</sup>. Inset shows plots of ( $1/M_{\rm rev}-1$ )<sup>0.5</sup> vs  $P_{\rm H_3}^{-0.5}$ .

and  $K_1$  the equilibrium constant for dissociative adsorption. From eqs 3–7,  $M_{\text{rev}}$  can be expressed by eq 8:<sup>23</sup>

$$M_{\text{rev}} = \frac{K_1 K_2^2 K_3 K_4 C_{\text{H, sat}}^2 P_{\text{H}_2}}{\left(1 + \sqrt{K_1 P_{\text{H}_2}}\right)^2 + K_1 K_2^2 K_3 K_4 C_{\text{H, sat}}^2 P_{\text{H}_2}} \tag{8}$$

where  $K_2$ ,  $K_3$ , and  $K_4$  are the equilibrium constants for eqs 4, 5, and 6, respectively. Experimental data for the dependence of  $M_{\rm rev}$  on  $P_{\rm H_2}$  could be well-reproduced with eq 8 (see Figure 2). From the plots of  $(1/M_{\rm rev}-1)^{0.5}$  vs  $P_{\rm H_2}^{-0.5}$ ,  $K_1$  and  $(K_2^2K_3K_4C_{\rm H,sat}^2)$  were estimated to be 0.059 kPa $^{-1}$  and 1.7 cm $^6$  mol $^{-2}$ , respectively (see Figure 2, inset).

The experimental profiles for  $H_2$  storage at different  $P_{H_2}$  values (in the range of 10-80 kPa) could be well-reproduced using eqs 2 and 8 (see Figure S5 in the Supporting Information), supporting the above-mentioned mechanism that the  $H_2$  storage proceeds through the dissociation of  $H_2$ , followed by the diffusion of  $H^+$  and  $e^-$  in the SiW bulk.

## ASSOCIATED CONTENT

**Supporting Information.** This material is available free of charge via the Internet at http://pubs.acs.org.

# AUTHOR INFORMATION

# **Corresponding Author**

\*Phone: +81 3 5841 7272. Fax: +81 3 5841 7220. E-mail: tmizuno@mail.ecc.u-tokyo.ac.jp.

#### ACKNOWLEDGMENT

We thank Dr. Y. Nakagawa, Mr. K. Hisajima, and Mr. T. Yamaguchi for their help with preliminary experiments. This work was supported in part by the Japan Society for the Promotion of Science (JSPS) through its FIRST Program, Global COE Program (Chemistry Innovation through Cooperation of Science and Engineering), and Grants-in-Aid for Scientific Researches from Ministry of Education, Culture, Sports, Science and Technology.

### **■ REFERENCES**

- (1) (a) Dunn, S. Int. J. Hydrogen Energy **2002**, 27, 235–264. (b) Armaroli, N.; Balzani, V. ChemSusChem **2011**, 4, 21–36.
- (2) (a) Schlapbach, L.; Züttel, A. Nature **2001**, 414, 353–358. (b) Grochala, W.; Edwards, P. P. Chem. Rev. **2004**, 104, 1283–1315.
- (c) van den Berg, A. W. C.; Areán, C. O. Chem. Commun. 2008, 668-681.
- (d) Satyapal, S.; Petrovic, J.; Read, C.; Thomas, G.; Ordaz, G. Catal.

Today 2007, 120, 246–256. (e) Eberle, U.; Felderhoff, M.; Schüth, F. Angew. Chem., Int. Ed. 2009, 48, 6608–6630.

- (3) (a) Schüth, F.; Bogdanović, B.; Felderhoff, M. Chem. Commun. **2004**, 2249–2258. (b) Dornheim, M.; Eigen, N.; Barkhordarian, G.; Klassen, T.; Bormann, R. Adv. Eng. Mater. **2006**, 8, 377–385.
- (4) (a) Hill, C. L.; Prosser-McCartha, C. M. Coord. Chem. Rev. 1995, 143, 407–455. (b) Okuhara, T.; Mizuno, N.; Misono, M. Adv. Catal. 1996, 41, 113–252. (c) Neumann, R. Prog. Inorg. Chem. 1998, 47, 317–370. (d) Hill, C. L., Ed. Chem. Rev. 1998, 98, 1–390. (Thematic issue on polyoxometallates.) (e) Kozhevnikov, I. V. Catalysis by Polyoxometallates; Wiley: Chichester, U.K., 2002.
  - (5) Sadakane, M.; Steckhan, E. Chem. Rev. 1998, 98, 219-238.
  - (6) Ai, M. Appl. Catal. 1982, 4, 245-256.
- (7) Kulesza, P. J.; Faulkner, L. R.; Chen, J.; Klemperer, W. G. J. Am. Chem. Soc. 1991, 113, 379–381.
- (8) (a) Nakamura, O.; Kodama, T.; Ogino, I.; Miyake, Y. Chem. Lett. 1979, 8, 17–18. (b) Nakamura, O.; Ogino, I.; Kodama, T. Solid State Ionics 1981, 3/4, 347–351. (c) Slade, R. C. T.; Pressman, H. A.; Skou, E. Solid State Ionics 1990, 38, 207–211.
  - (9) Benson, J. E.; Kohn, H. K.; Boudart, M. J. Catal. 1966, 5, 307–313.
- (10) Faughnan, B. W.; Crandall, R. S.; Heyman, P. M. RCA Rev. 1975, 36, 177–197.
- (11) (a) Georg, A.; Graf, W.; Neumann, R.; Wittwer, V. Thin Solid Films 2001, 384, 269–275. (b) Georg, A.; Graf, W.; Nuemann, R.; Wittwer, V. Solid State Ionics 2000, 127, 319–328. (c) Georg, A.; Graf, W.; Wittwer, V. Electrochim. Acta 2001, 46, 2001–2005.
- (12) (a) Nakagawa, H.; Yamamoto, N.; Okazaki, S.; Chinzei, T.; Asakura, S. Sens. Actuators B 2003, 93, 468–474. (b) Okazaki, S.; Nakagawa, H.; Asakura, S.; Tomiuchi, Y.; Tsuji, N.; Murayama, H.; Washiya, M. Sens. Actuators B 2003, 93, 142–147.
- (13) (a) Hodnett, B. K.; Moffat, J. B. J. Catal. 1985, 91, 93–103.
  (b) Mizuno, N.; Misono, M. J. Phys. Chem. 1989, 93, 3334–3339.
  (c) Misono, M. Catal. Rev. Sci. Eng. 1987, 29, 269–321.
- (14) (a) Katamura, K.; Nakamura, T.; Sakata, K.; Misono, M.; Yoneda, Y. *Chem. Lett.* **1981**, *10*, 89–92. (b) Mizuno, N.; Katamura, K.; Yoneda, Y.; Misono, M. *J. Catal.* **1983**, 83, 384–392.
- (15) Pd metal<sup>15a,b</sup> and transition metal-doped perovskites, <sup>15c</sup> which are candidates for H<sub>2</sub> sieving materials, have been reported to show the mixed protonic-electronic conducting properties, while high temperatures are required to show their conducting properties (≥573 K for Pd and ≥1073 K for perovskites):(a) Buxbaum, R. E.; Kinny, A. B. *Ind. Eng. Chem. Res.* 1996, 35, 530–537. (b) Adhikari, S.; Fernando, S. *Ind. Eng. Chem. Res.* 2006, 45, 875–881. (c) Matsumoto, H.; Shimura, T.; Iwahara, H.; Higuchi, T.; Yashiro, K.; Kaimai, A.; Kawada, T.; Mizusaki, J. *J. Alloys Compd.* 2006, 408–412, 456–462.
- (16) Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; Sehested, J. J. Catal. 2004, 224, 206–217.
- (17) When the H<sub>2</sub> storage experiment was carried out using Pt/SiW with the Pt:SiW molar ratio of 1:100, the values R (0.060 mol mol<sup>-1</sup> min<sup>-1</sup>) and M (0.37 mol mol<sup>-1</sup>) decreased.
- (18) The mass of  $H_2$  (wt%) stored in Pt/SiW was compared with those of typical  $H_2$  storage materials (or procedures) (see Table S1 in the Supporting Information). Although the mass of  $H_2$  stored in Pt/SiW is small and should be increased for practical utilization, the concept and the present findings will be applied to the development of not only storage materials but also separation and sensing materials in the future.
- (19) (a) Altenau, J. J.; Pope, M. T.; Prados, R. A.; So, H. Inorg. Chem. 1975, 14, 417–421. (b) Itabashi, E. Bull. Chem. Soc. Jpn. 1987, 60, 1333–1336.
- (20) (a) Bielański, A.; Datka, J.; Gil, B.; Małecka-Lubańska, A.; Micek-Ilnicka, A. Catal. Lett. 1999, 57, 61–64. (b) Micek-Ilnicka, A. J. Mol. Catal. A 2009, 308, 1–14.
- (21) Crank, J. The Mathematics of Diffusion; Oxford University Press: London, 1956.
- (22) Okuhara, T.; Tatematsu, S.; Lee, K. Y.; Misono, M. Bull. Chem. Soc. Jpn. 1989, 62, 717–723.
- (23) The experimental results could not be reproduced with only the first one-electron reduction (eq 5) (see the Supporting Information).